Module 4: HIV Testing Strategies and Algorithms

Learning Objectives

At the end of this module, you will be able to:

- Discuss the process for developing a national testing algorithm
- Explain how sensitivity, specificity, positive/negative predictive value relate to development of an HIV rapid testing algorithm
- Explain the HIV rapid testing algorithm approved in your country
- Determine HIV status following a particular algorithm

Content Overview

- Testing strategies and algorithms
- Developing national testing algorithm
- Measuring performance of HIV rapid tests
- Interpreting HIV status

Strategies and Algorithms

- Strategies Testing approach used to meet a specific need, such as:
 - Blood Safety
 - Surveillance
 - Diagnosis
- Algorithms The combination and sequence of specific tests used in a given strategy

Strategies and Algorithms (Cont.)

- For a given strategy, multiple algorithms may be used depending on the needs of testing settings
- The number of algorithms should be limited

HIV Testing Strategies

Parallel testing

Samples are tested simultaneously by two different tests

Serial testing

- Samples tested by a first test
- Result of first test determines whether additional testing is required

Testing Algorithms Should be Developed at National Level

Key Steps:

- Identify appropriate tests
- Develop algorithm
- Build consensus
- Develop policy
- Bring into national scale
- Review testing algorithms annually

Timeline for Developing National Testing Algorithm

Advantages of National Testing Strategies and Algorithms

Facilitates:

- Country-level standardization
- Procurement and supply management
- Training
- Quality assurance

Key Factors in Determining a Country's Algorithm

- Test performance in country
- Test availability in country
- Program needs
- Ease of use
- Type of specimen
- Cost
- Potential need to differentiate between HIV 1 & HIV 2

Evaluating Test Performance: Basic Terms

- Sensitivity (Se) of a test is its capacity to correctly identify people that are infected with HIV.
- Specificity (Sp) of a test is its capacity to correctly identify people that are not infected with HIV.
- Positive Predictive Value (PPV) is the probability that a person who tests reactive is indeed infected with HIV.
- Negative Predictive Value (NPV) is the probability that a person who tests negative is not infected with HIV.

Calculating Sensitivity, Specificity, PPV, & NPV

Test	Actual HIV statu		
result	HIV infected	HIV -uninfected	Total
Positive	A	В	A+B
Negative	C	D	C+D
Total	A+C	B+D	

Sensitivity = A ÷ (A+C) Specificity = D ÷ (B+D) Positive Predictive Value = A ÷ (A+B) Negative Predictive Value = D ÷ (C+D)

Calculating Sensitivity, Specificity, PPV, & NPV (Cont'd)

Test	Actual HIV status (Gold Standard)			
result	HIV infected	HIV -uninfected	Total	
Positive	A (370)	B (2)	A+B(372)	
Negative	C (4)	D (624)	C+D(628)	
Total	A+C (374)	B+D (626)	1000	

Sensitivity = A
$$\div$$
 (A+C) = 370 \div 374 = 98.9%
Specificity = D \div (B+D) = 624 \div 626 = 99.7%
PPV = A \div (A+B) = 370 \div 372 = 99.5%
NPV = D \div (C+D) = 624 \div 628 = 99.4%

HIV Rapid Test Performance

- No test is 100 % sensitive
- No test is 100 % specific

Note: Performance of tests and subsequent algorithm must be determined in context of population

How Prevalence Affects PPV & NPV

(Prevalence) (Se)

PPV=

(Prevalence) (Se) + (1- Prevalence) (1- Sp)

(1-Prevalence) (Sp)

NPV=

(1-Prevalence) (Sp + (Prevalence) (1- Se)

How Prevalence Affects PPV & NPV (Cont'd)

PPV for 1% prevalence population:

```
(1/100) (98.9/100)
= ----- = 76.9%
(1/100) (98.9/100) + (1-1/100) (1-99.7/100)
```

Testing Algorithm Describes the Sequence of Tests to be Performed

- An HIV Positive Status should be based upon the outcome of 2 or more tests
- When two test results disagree (one is reactive, the other non-reactive), the finding is called "discordant." In this case, a third test must be performed.

Always follow the sequence of the tests in the algorithm

Ideal Algorithm

- Tests need to be :
 - Highly sensitive
 - Highly specific

- Tests should not share the same false negatives and false positives
- 3rd test (if needed)

* Develop appropriate algorithm diagram (parallel or serial) and insert names of HIV tests that represent test 1, 2 or 3

Exercise: Interpreting HIV Status Using Testing Algorithm

- Refer to Participant Manual
- Work alone to determine HIV status
- 3 Minutes

Possible HIV Test Outcomes: Parallel Algorithm

TEST 1	TEST 2	TEST 3	HIV Status
Non-reactive	Non-reactive		Negative
Reactive	Reactive		Positive
Non-reactive	Reactive	Non-reactive	Negative
Reactive	Non-reactive	Non-reactive	Negative
Non-reactive	Reactive	Reactive	Positive
Reactive	Non-reactive	Reactive	Positive

Summary

- Explain the importance of a tests' Se, Sp, PPV, NPV
- Explain the testing algorithm adopted by MoH. What rapid tests are used and in what order?

